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ABSTRACT
Speech analysis can provide a potential non-invasive and
objective means of assessing and monitoring an individ-
ual’s mental health. Most studies to date have focused on
cross-sectional analysis and have not explored the benefits
of speech analysis as a longitudinal monitoring tool that can
assist in the management of chronic conditions such as major
depressive disorder (MDD). Objectively monitoring for shifts
in depression symptom severity levels over time presents a
notable challenge, which we address through an automated
approach using longitudinal English and Spanish speech
samples collected from a clinical population. We employ
time–frequency representations and linguistic embeddings
to enhance the early recognition of alterations in depression
levels in individuals with MDD. We investigate the suitability
of using siamese-based training for modeling these changes,
intending to enable personalized and adaptive interventions.

Index Terms— Depression, Speech Analysis, Language
Analysis, Longitudinal Assessment, Contrastive Training

1. INTRODUCTION

Major Depressive Disorder (MDD) is among the world’s
most common mental health issues. According to an Organi-
sation for Economic Co-operation and Development (OECD)
report released in 2018, approximately 21 million people
(4.5% prevalence) were living with a depressive disorder
across European Region (EU) countries in 2016 [1]. MDD
is characterized by persistent sadness, loss of interest, and

disruptions in sleep and appetite [2]. Monitoring changes
in MDD symptom severity is crucial for recognizing unique
triggers and early signs of potential relapse. However, the
lack of objective assessment tools means that processes are
typically based on a clinician’s judgment of symptoms retro-
spectively reported by the patient, introducing bias on both
sides [3].

Clinicians often observe someone’s voices and speech
patterns as criteria to assess their symptom severity; however,
these observations are subjective. Speech affected by depres-
sion is often described clinically as having reduced verbal
activity, shorter utterances, slower speech rate, and increased
pauses [4, 5]. The predictive power of individual speech fea-
tures has also been linked to changes in depression symptom
severity; e. g. [6, 7, 8, 9]. Most recent speech and depression
research is focused on developing machine learning models
that use multivariate feature spaces to detect the presence or
absence of depression in speech; e. g. [10, 11, 12, 13, 14].
Such works highlight the promise of using speech to monitor
changes in MDD symptom severity.

Herein, we investigate the suitability of speech and lan-
guage analyses for classifying shifts in depression symptom
severity level. We utilize longitudinal speech recordings of
187 English speakers and 53 Spanish speakers, all with a
clinical history of recurrent MDD. First, we select a pair of
recordings from the same speaker, each associated with dif-
ferent depression scores; one indicating a lower level of de-
pression and the other, a higher level. We then label the di-
rection of the depression score shift, which can either be from
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low to high or from high to low.
We propose an approach for classifying depression level

shifts that use contrastive learning and Siamese Neural Net-
works (SNNs). SNNs learn and compare representations
of input pairs [15], making them ideal for detecting pat-
terns in speech and language associated with depression level
changes. Therefore, unlike conventional classification meth-
ods, this approach pairs of recordings to learn the the direction
of the depression score shift. Our approach has the potential
to enhance our understanding of depression dynamics and aid
in early intervention by automatically detecting changes in
depression severity using speech and language cues.

2. THE RADAR-MDD SPEECH CORPUS

Remote Assessment of Disease and Relapse in Major De-
pressive Disorder (RADAR-MDD; [16]) is a longitudinal
cohort study examining the utility of multi-parametric remote
measurement technologies (RMT), including speech, to mea-
sure changes in symptoms and predict relapse in people with
MDD. The full eligibility and exclusion criteria for RADAR-
MDD are published fully in [16]. RADAR-MDD had three
recruitment sites: London, United Kingdom; Amsterdam,
The Netherlands; and Barcelona, Spain. In this work, we use
data from the UK and Spain sites; ethical approval for these
sites was obtained from the Camberwell St. Giles Research
Ethics Committee (17/LO/1154) in London, from the Fun-
dació Sant Joan de Deu Clinical Research Ethics Committee
(CI: PIC-128-17) in Barcelona.

2.1. Patient Involvement

The experimental protocol was co-developed with a patient
advisory board who shared their opinions on several user-
facing aspects of the study, including the choice and fre-
quency of survey measures, the usability of the study app,
participant-facing documents, selection of optimal participa-
tion incentives, selection, and deployment of wearable device
as well as the data analysis plan. The speech task and subse-
quent analysis have been discussed specifically with a Patient
Advisory Board.

2.2. Speech collection

For full details on the preparation and organization of the
speech data, the interested reader is referred to [7, 10]. In this
work, we used the free-response data only to use language
features alongside acoustic information. The total number of
participants and information on the distribution of the audio
files used in our analysis are presented in Table 1.

2.3. Data Availability

Due to the confidential nature of speech data, we are unable
to make our data publicly available. Access to the data can be

Table 1: Demographic and clinical information of the sub-
jects for each dataset

Spanish Dataset English Dataset
F/M F/M

Gender 37 / 16 146 / 41
Age 52.8 (10.3) / 55.4 (12.1) 45.4 (15.7) / 49.1 (14.8)
Education 12.0 (4.2) / 13.62 (4.3) 17.4 (5.8) / 16.4 (3.5)
PHQ-8 13.1 (6.0) / 10.6 (6.3) 10.4 (6.2) / 10.9 (6.1)
PHQ-8 range 0–24 / 0–24 0–24 / 0–24
# of recordings
per speaker 1.9 (1.8) / 1.9 (1.2) 2.8 (2.2) / 2.7 (2.2)

Values are expressed as mean (standard deviation). F: female.
M: male. Age and education are given in years.

made through reasonable requests to the RADAR-CNS con-
sortium and will be subject to local ethics clearances. Please
email the senior author for details.

3. METHODS

3.1. Siamese Based Neural Network

Instead of learning to classify its inputs, the SNN learns how
to differentiate between two inputs. It comprises two identi-
cal sub-networks that share weights among them [15]. Com-
monly, when training the network to differentiate between
similar and dissimilar instances, we often provide one positive
and one negative example at a time. Based on this method-
ology, we define a pair of recordings from the same speaker
with two depression scores, one with a lower depression score
and another with a higher one. The pair of recordings is se-
lected so that the depression score differs by five points ac-
cording to the eight-item Patient Health Questionnaire (PHQ-
8) [17] scores; noting we choose five points as this is the range
of the PHQ-8 severity intervals (0–4, 5–9, 10–14, 15–19, and
20–24) [17]. Then, we label the direction in which the de-
pression score shifted. It could be from low to high or from
high to low.

The first part of the network consists of creating a latent
space or embedding based on the modality architecture (Fig-
ure 1; note for illustration purposes, the only architecture for
the speech modeling part is shown.) This embedding will
guide the network according to the direction label. For this,
we use the Cosine Embedding loss (CS). These embeddings
are then subtracted to get one embedding for the classification
layer. Finally, the labels are passed through a Cross Entropy
Loss (CE) and both CS and CE are then summed, similar to
what is done in zero-shot learning [18]. Note that our ob-
jective is not primarily focused on identifying dissimilarities;
instead, it revolves around detecting shifts in depression. This
is why we opted not to employ the regular contrastive loss for
the final outputs. Additionally, two different network archi-
tectures were considered for each modality.
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Fig. 1: Siamese architecture network applied in this study. The upper and lower networks correspond to a pair of recordings
from the same speaker. (1) Latent Space Generation: Initially, the network extracts relevant information from the input features
to create a latent representation. (2) Embedding Subtraction: Next, the embeddings obtained from the pair are subtracted from
each other, resulting in a single combined representation. (3) Classification: Finally, a linear layer consisting of two neurons is
employed to discriminate into either an increase or decrease in depression scores.

3.1.1. Speech Modeling

The overall architecture in Figure 1 aims to model differ-
ent aspects related to articulation and prosody information
by combining log-Mel spectrograms, Gated Recurrent Units
(GRU), and Convolutional Neural Networks (CNN)1. We
considered the use of Mel spectrograms since this time-
frequency representation can help identify specific speech
characteristics or patterns associated with depression, such
as changes in pitch, speech rate, or the presence of specific
acoustic markers such as pauses or emotional prosody [19].
To generate the log-Mel spectrogram, we used a window of
45 ms and a hop size of 10 ms. Sequences of 5 s (500 frames)
were taken, and the number of Mel filters was set to 128. The
spectrograms were normalized according to the training set
using a z-score. A unit normalization layer is applied to the
input, followed by a GRU composed of 128 hidden states and
used to model the temporal dynamics. For the CNN part, a
pre-trained ResNet–18 on ImageNet-1K [20] was fine-tuned
and then modified to receive 1-channel input and to output
512 units passed that are then passed through a GELU ac-
tivation. Finally, after subtracting the two embeddings, a
classification layer is applied.

3.1.2. Language Modeling

In the text processing phase, we automatically generated tran-
scriptions using Whisper, an open-source Automatic Speech
Recognizer (ASR) [21]. We used the large model ver-
sion for both languages. Furthermore, we consider the use
of word embeddings, specifically a well-known pretrained

1he source code is available online https://github.com/
PauPerezT/DepShifts_SNNs

model called Robustly Optimized Bidirectional Encoder Rep-
resentations from Transformers–BERT Pretraining Approach
(RoBERTa) [22] RoBERTa uses the same concept as BERT,
but omits the Next Sentence Prediction (NSP) component and
employs larger batch sizes. It incorporates multiple atten-
tion mechanisms called “heads” which operate concurrently.
Furthermore, this approach enables the model to capture a
broader range of word relationships through multi-head atten-
tion. RoBERTa follows a transfer learning paradigm, where
it begins by pretraining on an unsupervised task known as
Masked Language Modeling (MLM). In this task, the model
learns to predict missing (masked) words within sentences. It
also introduces dynamic masking for MLM, where masked
tokens change during training epochs. We use RoBERTa–
base pretrained models on English and a multi-lingual corpus
for Spanish2, respectively. The average pooling from the last
layer (768 units) is taken as the embedding. A similar proce-
dure is followed here. However, we directly subtract the pair
embeddings to be passed to a classification layer.

4. EXPERIMENTS AND RESULTS

Following the proposed strategy in Section 3.1, we randomly
composed pairs of recordings (from the same speaker) to sim-
ulate a range of shifts in depression severity levels, we specif-
ically selecting pairs that exhibited a minimum 5-point dif-
ference in PHQ-8 scores.vIn the case of the Spanish corpus,
we compiled 100 pairs, with 54 pairs reflecting an increase in
PHQ-8 scores and 46 pairs indicating a decrease. In the En-
glish corpus, we obtained 524 pairs, with 260 pairs represent-

2English: https://huggingface.co/roberta-base, Multi-
lingual: https://huggingface.co/xlm-roberta-base

https://github.com/PauPerezT/DepShifts_SNNs
https://github.com/PauPerezT/DepShifts_SNNs
https://huggingface.co/roberta-base
https://huggingface.co/xlm-roberta-base


Table 2: Classification results for each modality and language
considering speaker dependent

Modality Language AUC Recall ↓ Recall ↑

Speech EN 0.66 (0.02) 0.60 (0.03) 0.61 (0.06)
ES 0.77 (0.05) 0.66 (0.11) 0.75 (0.07)

Language EN 0.69 (0.03) 0.61 (0.04) 0.63 (0.03)
ES 0.66 (0.06) 0.51 (0.32) 0.58 (0.31)

EN: English. ES: Spanish. ↓: high to low PHQ-8. ↑: low to high
PHQ-8. Values are expressed as mean (standard deviation)

Table 3: Classification results for each modality and language
considering speaker independent

Modality Language AUC Recall ↓ Recall ↑

Speech EN 0.65 (0.04) 0.51 (0.04) 0.72 (0.07)
ES 0.70 (0.04) 0.60 (0.07) 0.64 (0.03)

Language EN 0.71 (0.02) 0.58 (0.05) 0.74 (0.06)
ES 0.69 (0.04) 0.39 (0.31) 0.71 (0.25)

EN: English. ES: Spanish. ↓: high to low PHQ-8. ↑: low to high
PHQ-8. Values are expressed as mean (standard deviation)

ing a shift from low to high scores and 263 pairs indicating the
reverse, from high to low. Two experiments were performed
based on speaker-dependent and speaker-independent stratifi-
cation strategies. The models were trained following a 4-fold
cross-validation, where the reported results are based on the
average of the folds. The performance of the classifiers was
measured in terms of Recall and Area under the ROC Curve
(AUC). An additional baseline experiment using eGeMAPs
with a support vector machine was considered but later ex-
cluded due to unsatisfactory results.

For the speaker-dependent set-up (Table 2), the highest
performance for the speech modality was achieved in the
Spanish corpus, indicating moderate to good discrimination
ability (AUC = 0.77). The English data tends to yield slightly
higher AUC values for the language modality (AUC = 0.69).
We observed that in most cases, the classification of an in-
crease in the depression score was more accurately predicted.

The speaker-independent results exhibit a similar trend
(see Table 3). The highest performance for the speech modal-
ity was in the Spanish data (AUC = 0.70), whilst for the lin-
guistic modality it was in the English data (AUC = 0.71). Re-
garding the speech modality, the performance decreased by
approximately 7% compared to the speaker-dependent exper-
iment. However, the AUCs in the speaker-independent sce-
nario are slightly higher for the language modality than those
in the speaker-dependent scenario.

5. DISCUSSION AND CONCLUSIONS

This study explores the feasibility of automatically leverag-
ing speech and language data to identify shifts in depression
severity levels. The proposed methodology tested the capabil-
ity of SNNs with two longitudinal corpora (English and Span-

ish). In addition, we considered both speaker-dependent and
independent scenarios as speaker independence could help
model the phenomenon itself (depression) and, in contrast,
speaker-dependent analyses could allow the modeling of dis-
ease progression. The results showed that while there are dif-
ferences in specific performance metrics between the speaker-
dependent and speaker-independent scenarios, the general
trends and patterns remain consistent. Speaker-dependent
training tends to yield slightly better discrimination perfor-
mance. The model depression-related shifts from low to high
PHQ-8 scores according to the obtained recall values in dif-
ferent direction shifts. We will explore potential reasons for
this in future work.

Regarding individual languages, we observed that English
exhibits more consistent results in terms of standard deviation
values. This may be attributed to the larger training dataset
available for the proposed model, including pre-trained word
embeddings. A limitation of this study is that the PHQ-8 re-
lies on self-reported symptoms, potentially introducing social
desirability bias, misinterpretation, and susceptibility to cul-
tural or linguistic influences, leading to potential inaccuracies
and biases. For future work, we will explore personalized
training, where each speaker has a dedicated network. This
personalized approach is relevant because depression shifts
can be highly influenced by the patient’s personality and self-
awareness, and willingness to disclose symptoms. By con-
sidering this factor, we can gain deeper insights into the dy-
namics of depression over time. Personalized speech mod-
els demonstrate a higher resilience to confounders in the sig-
nal, ensuring more accurate and consistent performance cus-
tomized to individual users’ speech patterns [23].
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